
ENGR3390: Fundamentals of Robotics

Katerina Soltan
Project 2: Flipper the Dolphin
Team Clicks and Whistles

December 14, 2017

1

Overview

Flipper is an aquatic, dolphin-like robot designed to navigate to a sequence of different-colored buoys in
a pool. The robot autonomously finds the buoy it must approach next in the sequence using a PixyCam and
attempts to follow the straightest path to it. It’s propulsion system is heavily inspired by that of a dolphin’s
tail. To swim forward, the tail oscillates smoothly up and down like a wave. To turn, the tail rotates in one
plane and continues its oscillating motion.

Flipper very slowly moves the tail up and down to propel forwards.

This robot is the second project built in Fundamentals of Robotics, the ultimate goal of which is to
create an autonomous underwater vehicle with biologically inspired propulsion to carry out specific tasks.
The mission in the second iteration was to float just below the surface of the water and to complete a
triangle path between a set of buoys in a real-time determined sequence. Flipper was able to traverse the
pool in a straight path, exhibiting graceful, biomimetic movement. While all other subsystems pertinent
to determining the location of the target and controlling the robot performed well when tested separately,
despite our best efforts, we were unable to integrate them. Many of the design choices we made, especially
in software, were found to have better alternatives, and we hope to include them in another iteration of the
robot.

CAD assembly of Flipper.

2

Mechanical

System Design

The mechanical system for Flipper is divided into three main parts: front hull, tail, and pressure hull.
The front hull secures the pressure hull, which contains all water-sensitive electronics, and connects to the
tail which provides propulsion. The robot is designed to mimic the playful shape and smooth swimming
movement of a dolphin.

System Diagram of Flipper.

Pressure Hull

The cylindrical pressure hull contains all sensors and microcontrollers that require waterproofing. Two
rubber end caps with double O-rings close the acrylic tube from both sides and prevent water leakage. A
Schrader valve embedded through one of the end caps connects to a bike pump which fills the pressure hull
with air. To maintain air pressure inside, the tube slides into two tensioning caps which connect with a
ratchet and webbing mechanism, preventing the end caps from popping off due to the pressure. Battery
power is routed to the inside of the tube through three brass screws, one for a common ground, and one
for each of the power lines from the two batteries. Three threaded plastic valves route wires for two servos
and signal wires for three LEDs. All valves and screws are waterproofed with aquarium sealant and silicone
gasket glue. The air pressure inside of the tube helps to slow any potential leaking of water into the hull, as
the air is pushing everything out of the tube.

3

Left: The end cap has three brass screws for battery connections, three plastic valves for servo and LED wires, and a
Schrader valve for holding air pressure. Right: The pressure hull fits into two tensioning caps which are held together
with ratchets and webbing to hold air pressure.

Electronics inside of the tube are mounted on a laser-cut acrylic sheet which is attached to two deformable
3D-printed arcs which snap into the tube. A separate arc attached a PixyCam, which sits against a clear
acrylic window machined inside of the second end cap for an unobstructed view. Another arc holds a reed
switch which aligns with the dorsal fin magnet and allows power to the servos. The pressure hull sits on a
laser-cut retaining board that is bolted to platforms along the sides of the front hull. Velcro straps secure
the pressure hull to the board and are easily removed to release it.

Deformable arcs snap into the inside of the pressure hull. A laser cut mounting board fits between them for
attaching electronics.

4

Front Hull

The front hull is inspired by the barrel shape of a dolphin. Our main design constraint was the length
of the pressure hull which we wanted to minimize to accommodate the extensive tail. The pressure hull is
situated below the centerline of the body to account for the large buoyant force that it exerts, as it is filled
with air. Because we expected the robot’s nose to be elevated with respect to the rest of the body, threaded
rods are mounted on both sides of the bottom for the addition of heavy nuts for weight tuning. Battery
holders are also located at the bottom of the hull.

The top and bottom half of the hull are held together with latches for swift disassembling. The dorsal fin
contains a magnet which acts as an emergency stop.

The hull is fully 3D printed with ABS filament; the top and bottom half are held together with metal
latches, providing a quick-access point to the inside of the dolphin. A magnet is embedded in the dorsal fin
and acts as an emergency stop; pulling the dorsal fin up and out stops the flow of current to the motors.
The open nose cone provides an unobstructed view for the camera located inside of the pressure hull.

The pressure hull is strapped to the inside of the front hull with velcro straps.

5

Tail Propulsion

The propulsion system consists of two servos which independently drive two parts: pitch and yaw. An
intricate gear train replicated a sinusoidal motion in the tail, pitching up and down. The yaw portion of the
tail rotated the entire tail right and left, mimicking the natural rigid motion of a dolphin’s tail when turning.

The yaw servo is mounted behind the tube retaining board, connecting to a gear on a tail connection link
which holds the pitch servo.

Tail Yaw

The yaw servo sits on the bottom of the front hull and drives a tail connection link at a 3:1 reduction
ratio. The connection link slides onto a steel shaft which fits into cylindrical stopper, also at the bottom
of the hull. A small squeeze clamp located between the top of the hull and the connection link prevents
the shaft from moving up and out of the hull. To ensure the alignment of the shaft, the hull was not split
directly down the center and, instead, was printed with a full circular cross section at the very back where
the shaft connects. The connection link rotates around the shaft and contains two ball bearing (one on top,
one on the bottom) embedded in it for smooth rotation. The tail servo is supported by the connection link,
allowing the entire tail system to rotate together.

The yaw subsystem consists of a servo driving a tail connection link about a rigid shaft.

6

Tail Pitch

To replicate the the smooth oscillatory motion of the tail, a gear train powered by one servo extends
across the sectioned tail. Eleven gears are used to achieve the desired movement across five sections. One
driving gear on the servo translates rotation to a fixed gear on the first link. Another fixed gear on the
opposite side of the link provides a reduction to the fixed gear on the next link which moves along it. The
last link connects to a passive tail fin which provides thrust on forwards and upwards path, pushing against
the water with its large cross-sectional area. Gears were fixed using small pins and hot glue to prevent
slipping.

Diagram of the 11 gears and their positions relative to the tail links (represented by colors rectangles). Black
pins represent gears fixed to a link.

The tail system contains many bearings and shoulder screws for gear rotation, making it too heavy for
the servo to move, even in water. The positively buoyant pressure hull floats to the surface, causing the tail
to sink downwards. To alleviate the stress on the servo and to level the dolphin body, large pieces of pink
foam were cut to fit inside of the first three links. The servo was able to successfully move the tail in this
configuration, although the nose of the robot still pointed upwards.

Foam was placed inside of the tail to make more neautrally buoyant and easier to move.

7

Electrical System Design

Flipper ’s electrical system consists of two Arduino, representing the thinking and acting aspect of the
brain, a couple of sensors to monitor the environment inside of the pressure hull (overheating or water
presence), a PixyCam camera for visual feedback from the pool, two servos, one for yaw and one for pitch,
and two batteries.

Power

Two 7.2V NiMH batteries power the robot; one is a dedicated supply for the microcontrollers and sensors
while the second is reserved for servos. Fuses (5A) are installed in line with the batteries to prevent current
overdraw damaging the rest of the system. The ground wires of the batteries are coupled to create one
mother ground line. The batteries are places outside of the pressure hull and connect to the electronics
inside via brass screws. The yaw and pitch servos as well as the LEDs attach to the signal wires routed
through plastic valves.

Power flow diagram.

8

Sense/Think Arduino

The sense/think Arduino represent the sensing and decision making part of a robot brain. A temperature
sensor, water level sensor, a PixyCam camera, and the emergency stop are connected to this Arduino for
quickly taking readings and incorporating them into the control loop. The sensors and emergency stop (a
magnetically activated reed switch) attach to an I/O breakout shield. The Arduino communicates with
a ground control laptop through an XBee radio module. The XBee receiver is mounted on a Sparkfun
breakout board on top of the sense/think Arduino, while the transmitter is connected to the laptop. One
of the batteries is dedicated to powering the sense/think portion of the electronics, using a 5V DC/DC
converter for a smooth input.

Data flow diagram.

9

Act Arduino

The yaw and pitch servos are connected directly to it through another I/O board. For safety, servo power
is separated from the act Arduino power by cutting the diode between input servo and logic power. Servo
power is routed from the second battery through a normally open relay controlled programatically by the
sense/think Arduino; if there is no power on this line, the relay will remain open, and no power will flow to
the servos. The reed switch provides a mechanical emergency stop capability. It is wired in-line between the
sense/think Arduino pin and the relay; thus, if the magnet is not closing the reed switch, even if the Arduino
is programatically allowing the relay to close, it will remain open until the dorsal fin with the magnet is
lowered.

Arduinos and their shields were mounted to the flexible arcs for easy placement inside of the pressure hull.

All of the electronics were fit inside of the pressure hull and sealed.

10

Software System Design

The sense/think Arduino’s job is broken up into five tasks. The first is to communicate with the ground
control laptop via XBee to receive a mission or user commands. The second is to read the PixyCam output
and to determine whether it sees the buoy that it is looking for. Next, the dolphin robot’s state must be
updated to reflect whether the robot is in searching mode or approaching mode. Based on this mode, the
motion parameters are calculated. Finally, these parameters are sent to the act Arduino through I2C. The
act Arduino simply receives this transmission and writes the given values to the servos.

Sense/Think

Mission Communication

The XBee is used to communicate between the ground station laptop and the sense/think Arduino. It
is setup on pins 2 and 3 with SoftwareSerial (the Sparkfun XBee shield uses these), leaving the pins Serial
Monitor uses open for debugging.

1 /∗∗
2 ∗ DolphinVar iab les . h
3 ∗ Purpose : De f ines s t a t e and miss ion va r i ab l e s , as we l l as XBee port which are used ac ro s s

mu l t ip l e header f i l e s in the p r o j e c t .
4 ∗ Notes : Inc lude t h i s f i l e b e f o r e any other header f i l e s to avoid compi la t ion e r r o r s o f

undef ined v a r i a b l e s .
5 ∗/
6

7 // Def ine XBee : Sparkfun XBee board uses p ins 2 (DOUT − RX) and 3 (DIN − TX) .
8 // Use Software S e r i a l to l eave S e r i a l Monitor open f o r debugging .
9 #inc lude <So f twa r eS e r i a l . h>

10 So f twa r eS e r i a l XBee (2 , 3) ; // RX, TX
11

12 // Def ine s 5 robot s t a t e s o f the dolphin .
13 // Enum s t a t e s can be used as i n t e g e r s , with Standby = 0 . . . Helpme = 6 .
14 enum robotState {
15 STANDBY, // Waiting f o r miss ion
16 SEARCH, // Search ing f o r next t a r g e t
17 APPROACH, // Approaching t a r g e t
18 VICTORY, // Tran s i t i ona l s t a t e to update miss ion , or wait f o r new one .
19 HELPME // Sensors picked up problem in robot , such as f l ood ing , overheat ing , or e−stop .
20 } ;
21

22 // de c l a r e do lph inState as a robotState data s t r u c tu r e
23 enum robotState do lph inState ;
24

25 // Miss ion d e f i n i t i o n v a r i a b l e s
26 bool hasMiss ion = f a l s e ; // The miss ion comes from the computer
27 St r ing miss ion = ”” ; // r f o r red , y f o r yel low , w f o r white
28 i n t l engthMiss ion = 0 ;
29 i n t cu r r en t m i s s i o n s t ep = 0 ; // 0 i s the f i r s t s tep o f the miss ion , increment un t i l

l engthMis s ion − 1
30

31 // Approach Timing : From d i f f e r e n t angles , buoys look d i f f e r e n t s i z e s due to LED
br i gh tn e s s e s and d i s p e r s i o n . Allow robot to approach buoy f o r a s e t amount o f time
be f o r e comparing s i z e o f buoy to t a r g e t s i z e .

32 boolean approach ing t ime r s e t = f a l s e ; // Did the robot go in to approach s t a t e f o r t h i s buoy
33 long approach s ta r t t ime = 0 ; // time robot entered approaching mode f o r cur rent buoy
34 long min approach time = 10 ∗ 1000L ; // Approach f o r 10 s be f o r e c on s i d e r i ng buoy ’ s proximity

.
35

36 // Reset miss ion v a r i a b l e s to be ready f o r new miss ion .
37 void r e s e tMi s s i on () {
38 hasMiss ion = f a l s e ;
39 miss ion = ”” ;
40 l engthMis s ion = 0 ;
41 cu r r en t m i s s i o n s t ep = 0 ;
42 }

11

PixyCam Logic

The PixyCam is sampled once every 500ms. Sampling it continuously (as fast the main loop executes)
does not allow the camera enough time to process the image and it will often switch rapidly between seeing
and not seeing an object that has not moved from its position in front of it. The PixyCam pre-processes
images to find the positions rectangular blocks of colors which it has been trained to recognize. For this
mission, the camera was trained on submerged red, green, and blue LED arrays. During testing, red, blue,
and yellow balls were used (thus the naming of the color codes).

1 /∗∗
2 ∗ PixyLogic . h
3 ∗ Purpose : De f ines the PixyCam ob j e c t . Reads the PixyCam input , determines whether i t can

see the c o r r e c t buoy and where i t i s . Decides whether the buoy i s c l o s e enough .
4 ∗ Notes : The area o f the block the PixyCam must see to dec ide that the buoy i s c l o s e enough

va r i e s hugely with where the robot i s in the pool . The value cu r r en t l y s e t may need
c a l i b r a t i o n .

5 ∗/
6 #inc lude <SPI . h> // S e r i a l Pe r iphe ra l I n t e r f a c e : the way we communicate with the our PixyCam
7 #inc lude <Pixy . h>
8

9 Pixy pixy ; // This ob j e c t handles the pixy cam
10

11 // Pixycam v i s i o n v a r i a b l e s
12 bool canSeeMissionBuoy = f a l s e ;
13 i n t buoyX = −1, buoyY = −1; // Pos i t i on o f the buoy : X i s 0 to 319 , Y i s 0 to 199 .
14 //−1 i n d i c a t e s we don ’ t know .
15 i n t CLOSE BUOY AREA = 1000 ; // Change to tune how c l o s e robot comes to buoy be f o r e turn ing
16 bool miss ionBuoyIsClose = f a l s e ; // True : reached the buoy and can switch to a new ta rg e t .
17

18 long lastTimePixySampled = 0 ; // Do not sample the pixy too f a s t , to avoid swi t ch ing between
Search to Approach rap id l y

19 i n t pixySampleTime = 500 ; // Read pixycam every 500 ms .
20

21 // From Arduino API s e c t i o n in http ://www. cmucam . org / p r o j e c t s /cmucam5/
22 // wik i / Hook ing up P ixy to a Mic ro con t ro l l e r (l i k e an Ardu ino)
23 #de f i n e XMAX 319 // maximum ho r i z on t a l p o s i t i o n on pixycam . Min i s 0 .
24 #de f i n e X CENTER XMAX / 2 // ho r i z on t a l c en t e r o f the pixycam
25 #de f i n e YMAX 199 // maximum v e r t i c a l p o s i t i o n on pixycam . Min i s 0 .
26

27 void setupPixy () {
28 pixy . i n i t () ;
29 }
30

31 i n t getCharPixyColor (char c) {
32 switch (c) {
33 case ’ r ’ :
34 r e turn 1 ; // Pixy t ra in ed on red as s i gna tu r e 1
35 case ’ y ’ :
36 r e turn 2 ; // Pixy t ra in ed on ye l low as s i gna tu r e 2
37 case ’w ’ :
38 r e turn 3 ; // Pixy t ra in ed on white as s i gna tu r e 3
39 de f au l t :
40 r e turn −1; // This c o l o r doesn ’ t e x i s t
41 }
42 }

The sense/think Arduino processes the output of the PixyCam by determining if any of the blocks it
has detected are of the color that it is currently searching for. If there are such blocks, it chooses the one
with the largest area and sets its position to be the target. It also changes the variable canSeeMissionBuoy
to true which can trigger a state change from Search to Approach. To determine whether the buoy is close
enough to consider victory, a maximum area threshold is set; if the area of the block with the correct color
is greater, victory is achieved.

12

1 bool readPixyCam () {
2 i n t blockCount = pixy . getBlocks () ; // Number o f b locks detec ted
3 miss ionBuoyIsClose = f a l s e ;
4 canSeeMissionBuoy = (blockCount > 0) ;
5 i n t maxIndex = −1; // Def ine as −1 in case no detec ted b locks have the c o r r e c t c o l o r
6 i n t maxArea = 0 ;
7 i f (canSeeMissionBuoy) { // I f the re are p o t e n t i a l buoys
8 f o r (i n t i = 0 ; i < blockCount ; i++) {
9 // Only check b locks that are o f the c o l o r that i s be ing searched f o r

10 i f (pixy . b locks [i] . s i gna tu r e == getCharPixyColor (miss ion [c u r r e n t m i s s i o n s t ep])) {
11 // Choose the block with the l a r g e s t area to be the supposed buoy
12 i n t area = pixy . b locks [i] . width ∗ pixy . b locks [i] . he ight ;
13 i f (area > maxArea) {
14 maxArea = area ;
15 maxIndex = i ;
16 }
17 }
18 }
19 }
20 // I f we have detec ted a buoy , dec ide whether we are c l o s e enough to the buoy as v i c t o r y
21 i f (maxIndex > −1){
22 buoyX = pixy . b locks [maxIndex] . x ;
23 buoyY = pixy . b locks [maxIndex] . y ;
24 i f (m i l l i s () − approach s ta r t t ime >= min approach time) {
25 // Could p o t e n t i a l l y be c l o s e to a buoy , compare area
26 miss ionBuoyIsClose = (maxArea > CLOSE BUOY AREA) ? true : f a l s e ;
27 }
28 d i g i t a lWr i t e (13 , HIGH) ;
29 i f (miss ionBuoyIsClose) {
30 XBee . p r i n t l n (”Miss ion buoy i s c l o s e ”) ;
31 }
32 }
33 e l s e {
34 d i g i t a lWr i t e (13 , LOW) ;
35 canSeeMissionBuoy = f a l s e ;
36 buoyX = −1;
37 buoyY = −1;
38 }
39 r e turn canSeeMissionBuoy ;
40 }

Updating the State

Because the sense/think Arduino’s job has five distinct parts, the code is broken up into header files that
are dedicated each to one of the parts. The main ino file includes all of these files, calls the setup functions
for all components in the main setup(), and depending on if the system sensors are okay, sets the state of
the robot to Standby.

1 /∗∗
2 ∗ SenseThinkDolphin . ino
3 ∗ Purpose : Code f o r the sense / th ink Arduino o f team Cl i ck s and Whist les r obo t i c do lphin .
4 ∗ Notes : The f u l l code i s broken up in to header f i l e s .
5 ∗ This f i l e i s r e s e rved f o r updating the s t a t e o f the robot based on senso r and
6 ∗ camera input , as we l l as updating the cur rent s tep in the miss ion .
7 ∗ Author : Katya Soltan
8 ∗/
9

10 #inc lude ”DolphinVar iab les . h” // Handles dolphin s t a t e and miss ion v a r i a b l e s that are
11 // used between modules (pixy /miss ion com/ act params)
12 #inc lude ” SensorLogic . h” // Handles s en so r s and system check func t i on s
13 #inc lude ”PixyLogic . h” // Handles pixycam and image p ro c e s s i ng
14 #inc lude ”ActCommunicationLogic . h” // Handles I2C communication with ACT Arduino
15 #inc lude ”MissionCommunicationLogic . h” // Handles download o f miss ion from XBee
16

17 // check that systems are okay ; a s s i gn i n i t i a l s t a t e ac co rd ing ly

13

18 void setup () {
19 setupPins () ;
20 setupPixy () ;
21 setupI2C () ;
22 setupMissionCom () ;
23

24 i f (! areSystemsOK ()) {
25 do lph inState = HELPME;
26 pr intDo lph inState () ;
27 }
28 e l s e {
29 do lph inState = STANDBY;
30 pr intDo lph inState () ;
31 XBee . p r i n t (” Input Miss ion (r−red , y−yel low , w−white) : ”) ;
32 }
33 f r e e z e moto r s () ; // Make sure s e rvo s are o f f at the beg inning o f miss ion .
34 }

In the main loop of execution, the sense/think Arduino attempts to receive a mission from the XBee, if
it is in Standby mode. Once it has a mission, it will check if the user has sent a command over the XBee to
override its current state. Then, it reads the Pixycam and depending on the output, updates the state of the
robot. Lastly, it sends an updated set of act parameters to the act Arduino. It repeats this loop indefinitely.

1 void loop () {
2 i f (do lph inState == STANDBY) {
3 hasMiss ion = downloadMission () ; // attempt to download miss ion here with XBee
4 i f (hasMiss ion) { // when get one , s t a r t s ea r ch ing
5 do lph inState = SEARCH;
6 r e l e a s e moto r s () ; // Allow power to the motors .
7 cu r r en t m i s s i o n s t ep = 0 ;
8 XBee . p r i n t (”\nMission r e c i e v ed : ”) ;
9 XBee . p r i n t (miss ion) ;

10 XBee . p r i n t l n () ;
11 pr intDo lph inState () ;
12 }
13 e l s e re turn ; // Otherwise keep wai t ing f o r miss ion , remain in STANDBY mode
14 }
15

16 communicateWithXBee () ; // Check i f the re i s a message from the user that ov e r r i d e s the
s t a t e o f the robot

17

18 i f (m i l l i s () − lastTimePixySampled >= pixySampleTime) { // Sample PixyCam at slow ra t e to
a l low f o r p ro c e s s i ng time and to smooth the s i g n a l

19 readPixyCam () ;
20 lastTimePixySampled = m i l l i s () ; // Update time pixy sampled .
21 updateDolphinState () ;
22

23 }
24 sendActParams () ; // Ping the ACT Arduino with s t a t e and servo p o s i t i o n s
25 }

The dolphin has five separate states. In Standby mode, it is not moving and is waiting for a mission to
be transmitted over the XBee. Once it receives the mission, the robot enters Search mode. It turns in a
circle until it detects the buoy of the correct color for the first step in the mission. Once it detects the buoy,
it switches into Approach mode; it swims directly at the buoy. If it loses the buoy, it returns into Search
mode. Otherwise, once it determines the buoy is close enough, it switches into Victory mode. If there is
another step in the mission, it returns into Search mode, updating the color of the buoy it is searching for.
If it has no more buoys to search for, it enters Standby mode and waits for another mission.

1 void updateDolphinState () {
2 // THINK: Figures out which s t a t e the robot should be in .
3 i f (! areSystemsOK ()) {
4 do lph inState = HELPME;
5 f r e e z e moto r s () ;
6 }
7

14

8 i f (do lph inState == SEARCH) {
9 i f (canSeeMissionBuoy) {

10 do lph inState = APPROACH;
11 i f (! approach ing t ime r s e t) {
12 approach s ta r t t ime = m i l l i s () ; // update time o f l a s t v i c t o r y
13 approach ing t ime r s e t = true ; // Have s e t the t imer from the time i t ’ s approaching .
14 XBee . p r i n t l n (” Set t imer . ”) ;
15 }
16 }
17 i f (miss ionBuoyIsClose) {
18 do lph inState = VICTORY;
19 approach ing t ime r s e t = f a l s e ;
20 XBee . p r i n t l n (”Reset t imer . ”) ;
21 }
22 }
23

24 e l s e i f (do lph inState == APPROACH) {
25 i f (miss ionBuoyIsClose) {
26 do lph inState = VICTORY; // Use t h i s s t a t e to update miss ion .
27 approach ing t ime r s e t = f a l s e ;
28 XBee . p r i n t l n (”Reset t imer . ”) ;
29 } e l s e i f (! canSeeMissionBuoy) {
30 do lph inState = SEARCH;
31 }
32 }
33

34 e l s e i f (do lph inState == VICTORY) {
35 incrementMiss ionTarget () ;
36 i f (c u r r e n t m i s s i o n s t ep == −1){
37 do lph inState = STANDBY;
38 r e s e tMi s s i on () ;
39 f r e e z e moto r s () ;
40 XBee . p r i n t (” Input Miss ion (r−red , y−yel low , w−white) : ”) ;
41 }
42 e l s e {
43 do lph inState = SEARCH;
44 XBee . p r i n t (” Search ing f o r ”) ;
45 XBee . p r i n t (miss ion [c u r r e n t m i s s i o n s t ep]) ;
46 XBee . p r i n t (” buoy .\n”) ;
47 }
48 }
49 pr intDo lph inState () ;
50 }
51

52 void pr intDo lph inState () {
53 switch (do lph inState) {
54 case STANDBY:
55 XBee . p r i n t l n (”STANDBY”) ;
56 break ;
57 case SEARCH:
58 XBee . p r i n t l n (”SEARCH”) ;
59 break ;
60 case APPROACH:
61 XBee . p r i n t l n (”APPROACH”) ;
62 break ;
63 case VICTORY:
64 XBee . p r i n t l n (”VICTORY”) ;
65 break ;
66 case HELPME:
67 de f au l t :
68 XBee . p r i n t l n (”HELPME”) ;
69 break ;
70 }
71 }

15

To update the mission to the next step, the Arduino checks whether there are any buoys left for it to
find in its current mission. If so, it will trigger a return to Standby mode. Otherwise, it increments the step
in the mission and causes a switch to Search mode.

1 // Update the t a r g e t buoy when one i s found .
2 void incrementMiss ionTarget () {
3 cu r r en t m i s s i o n s t ep++;
4 i f (c u r r e n t m i s s i o n s t ep >= lengthMiss ion) {
5 cu r r en t m i s s i o n s t ep = −1; // Ind i c a t e miss ion i s over .
6 }
7 }

Calculating Act Parameters

For each given state, there is a set movement for the servos. Each servo was calibrated to determine its
maximum up/down or right/left positions. Every ten milliseconds, the Arduino recalculates all servo position
parameters to send to the act Arduino. Within these ten seconds, if the yaw or pitch servo’s positions need
to change, they will update and the new value will be included in the transmission. This setup requires three
timers, one for what frequency to check for updates in positions, and one each for the yaw and pitch servo
position calculators.

1 /∗∗
2 ∗ ActParams . h
3 ∗ Purpose : De f ines the yaw and p i t ch servo po s i t i o n pat t e rn s f o r each s t a t e at a g iven time

.
4 ∗ Warning : The t iming f o r updating act parameters does not play we l l with the t iming o f

each o f the act parameter c a l c u l a t o r s . Consider moving t h i s code to the Act Arduino .
5 ∗/
6 // Servo Movement Timing Var iab l e s
7 long unsigned lastTailMoveTime = 0 ; // Last time we ca l c u l a t ed t a i l s e rvo p o s i t i o n s .
8 long unsigned lastUpdateTime = 0 ; // Keeps t rack o f the l a s t time at which we checked to
9 //update act parameters (yaw and t a i l p o s i t i o n s) .

10 long unsigned lastYawMoveTime = 0 ;
11

12 i n t updateDelayTime = 10 ; // Every couple o f ms r e c a l c u l a t e t a i l /yaw po s i t i o n i n g . This va lue
13 // has to be low i f you want the t a i l to f l a p at a very high
14 // frequency , because otherwise , i t doesn ’ t update f a s t enough .
15

16 // Time delay must be sma l l e r than time step f o r moving the servo at a constant per iod
17 i n t f a s tF lapPer i od = 1 .8 ∗ 1000 ; // 1 f u l l c y c l e in x m i l l i s e c ond s
18 i n t s lowFlapPer iod = 2 ∗ 1000 ; // 1 f u l l c y c l e in x m i l l i s e c ond s
19

20 // Servo Po s i t i on s : Look in to making sure that the s e rvoLe f t /Right are
21 // not negat ive , s i n c e t ransmi t t ing unsigned bytes .
22 i n t yawServoLeft = 30 ; // degree s Ca l ib rated with t e s t Se rvo Pos in Arduino f o l d e r .
23 i n t yawServoRight = 130 ; // degree s
24

25 i n t t a i l S e r v oL e f t = 65 ; // degree s (Actua l ly down)
26 i n t t a i l S e rvoR igh t = 140 ; // degree s (Actua l ly up)
27 i n t servoAngleChange = 2 ; // Smal l e s t va lue by which to increment servo po s i t i o n
28 i n t yawServoPos = (yawServoRight + yawServoLeft) / 2 ; // I n i t i a l i z e to the midpoint .
29 i n t t a i l S e rvoPos = (ta i l S e rvoR igh t + t a i l S e r v oL e f t) / 2 ; // I n i t i a l i z e to the midpoint .
30 i n t t a i l D i r = 1 ; // I f 1 : yaw servo i s moving to the r i g h t (increment ing) . I f −1: yaw servo
31 // i s moving to the l e f t (decrementing)
32

33 i n t numStepsInTailCycle = 2 ∗ abs (t a i l S e rvoR igh t − t a i l S e r v oL e f t) / servoAngleChange ;
34 // Number o f s t ep s to complete f u l l pe r iod (up , down , up) motion f o r
35 // the t a i l with servoAngleChange update
36

37 i n t numStepsInYawApproachAdjustment =
38 2 ∗ abs (yawServoRight − yawServoLeft) / servoAngleChange ;
39 // Number o f s t ep s to complete f u l l sweep (r ight , l e f t) motion f o r
40 // yaw with servoAngleChange update
41

42 i n t yawDir = 1 ;

16

To achieve the biomimetic dolphin tail motion, the pitch servo moves smoothly up and down at a set
frequency. Once it gets to the maximum right or left position, it switches direction and continues its motion.
Each update step moves the servo 2 degrees for a smooth motion. The function updateTailPosition() takes a
period that the tail should achieve, calculates the time step required to move completely right and left with
the angle change to achieve this period, and if it time to move, updates the pitch (tail in the code) servo
position.

1 // Moving the t a i l p o s i t i o n at a constant f requency up and down
2 void updateTa i lPos i t i on (i n t per iod) {
3 i n t timeToMove = per iod / numStepsInTailCycle ; // Need to move servo every x m i l l i s e c ond s
4 // to ach i eve t h i s f requency
5 i f (m i l l i s () − lastTailMoveTime >= timeToMove) { // Update se rvo d i r e c t i o n only i f c o r r e c t
6 // amount o f time has passed
7

8 // Check to see i f the se rvo w i l l move out o f bounds with cur rent d i r e c t i on , e i t h e r
9 // l e f t (too much decrement) or r i g h t (too much increment)

10 i f (t a i l S e rvoPos + t a i l D i r ∗ servoAngleChange > t a i l S e rvoR igh t | |
11 t a i l S e rvoPos + t a i l D i r ∗ servoAngleChange < t a i l S e r v oL e f t) {
12 // Switch d i r e c t i o n
13 t a i l D i r ∗= −1;
14 }
15

16 t a i l S e rvoPos += t a i l D i r ∗ servoAngleChange ; // Update t a i l s e rvo pos
17 lastTailMoveTime = m i l l i s () ;
18 }
19 }

In Approach mode, the robot attempts to swim in a straight line towards the target. Because drift is
inevitable, the yaw servo must compensate for th motion by moving right or left. The function updateYaw-
Position() will move the servo to the right or left at a constant period until the target is in the middle of the
PixyCam frame.

1 void updateYawPosition (i n t per iod) { // Moves the yaw servo s lowly to the r i g h t or to the
l e f t in Approach mode

2 i n t timeToMove = 70 ; // Update by servoAngleChange every 70ms .
3 i f (m i l l i s () − lastYawMoveTime >= timeToMove) { // Update se rvo d i r e c t i o n only i f c o r r e c t
4 // amount o f time has passed
5

6 // Check to see i f the se rvo w i l l move out o f bounds with cur rent d i r e c t i on , e i t h e r
7 // l e f t (too much decrement) or r i g h t (too much increment)
8 i f (yawServoPos + yawDir ∗ servoAngleChange > yawServoRight | |
9 yawServoPos + yawDir ∗ servoAngleChange < yawServoLeft) {

10 //Don ’ t move .
11 } e l s e {
12 yawServoPos += yawDir ∗ servoAngleChange ;
13 }
14 lastYawMoveTime = m i l l i s () ;
15 }
16 }

In Standby mode, both servos are in the neutral position (halfway between their extremes). In actuality,
the servos do not get power when the robot is waiting for a mission because the relay is turned off in the
change of state code.

1 void getStandbyActParams () {
2 yawServoPos = (yawServoRight + yawServoLeft) / 2 ; // I n i t i a l i z e to the midpoint .
3 t a i l S e rvoPos = (ta i l S e rvoR igh t + t a i l S e r v oL e f t) / 2 ; // I n i t i a l i z e to the midpoint .
4 }

In Search mode, the robot moves the tail up and down for propulsion while moving the yaw servo
completely to the right to achieve a circling motion which allows it to turn around and locate the buoy.

1 void getSearchActParams () {
2 yawServoPos = 0 ; // s tays constant .
3 updateTa i lPos i t i on (f a s tF lapPer i od) ;
4 }

17

During Approach mode, the tail continuous its undulatory motion while the pitch servo gets updated if
the center of the buoy is not in the center of the frame of the PixyCam. If it is in the center, the yaw servo
stays in its position.

1 // When the robot i s approaching , want to keep buoy cente red in v i s i o n
2 // Can ach ieve by beat ing the t a i l at a r ea sonab l e f requency and ad ju s t i ng yaw cont inuous ly
3 void getApproachActParams () {
4 i f (X CENTER − buoyX > 10) { // Buoy i s to the l e f t o f c en t e r
5 yawDir = −1; // Compensate l e f t
6 updateYawPosition (s lowFlapPer iod) ;
7 }
8 i f (buoyX − X CENTER > 10) { // Buoy i s to the r i g h t o f c en te r
9 yawDir = 1 ; // Compensate r i g h t

10 updateYawPosition (s lowFlapPer iod) ;
11 }
12 // otherwise , the buoy i s s t r a i g h t on , do not change yaw . We can a l s o change the statements
13 // above to givemore leeway . Say , i f the cen te r o f the blob i s with in 10 o f the center ,
14 // keep going s t r a i g h t .
15

16 updateTa i lPos i t i on (f a s tF lapPer i od) ;
17 }

Because the Victory mode is currently just a transitional mode, the yaw and pitch servo positions stay
constant during this state. The same applies to the Helpme state because the servos should not be getting
power.

1 // For now , the v i c t o r y t r a n s i t i o n s t a t e can stay in i t s exact p o s i t i o n
2 // Can do a funky th ing when the miss ion has been ended l a t e r .
3 void getVictoryActParams () {
4 yawServoPos = yawServoPos ;
5 t a i l S e rvoPos = ta i l S e rvoPos ;
6 }
7

8 // Helpme mode has to p r e s s the estop , so the se rvo p o s i t i o n s w i l l not change .
9 void getHelpmeActParams () {

10 yawServoPos = yawServoPos ;
11 t a i l S e rvoPos = ta i l S e rvoPos ;
12 }

The act parameters are updated at a constant time interval. Instead of flooding the act Arduino with
servo positions which may not be changing, it would be a better design to only update the parameters when
there has been a change in them.

1 boolean getActParams () { // Return true i f i t i s time to send act parameters
2 i f (m i l l i s () − lastUpdateTime >= updateDelayTime) {
3 switch (do lph inState) {
4 case STANDBY:
5 getStandbyActParams () ;
6 break ;
7 case SEARCH:
8 getSearchActParams () ;
9 break ;

10 case APPROACH:
11 getApproachActParams () ;
12 break ;
13 case VICTORY:
14 getVictoryActParams () ;
15 break ;
16 case HELPME: // I f our s t a t e i s not one o f the above , we have a problem
17 de f au l t :
18 getHelpmeActParams () ;
19 break ;
20 }
21 lastUpdateTime = m i l l i s () ; // Update t imer
22 r e turn t rue ;}
23 r e turn f a l s e ; // Not time yet to check f o r param updates
24 }

18

Transmitting Act Parameters

The dolphin state, yaw servo position, and tail position are transmitted to the Act Arduino using the
Wire library for I2C communication.

1 /∗∗
2 ∗ ActCommunicationLogic . h
3 ∗ Purpose : Transmits s t a t e and yaw and p i t ch servo p o s i t i o n s v ia I2C to the Act Arduino .
4 ∗ Notes : I f sendActParams () i s c a l l ed , the r e c e i v i n g Arduino must be powered and ab le to

r e c e i v e messages . Otherwise , the program f r e e z e s here .
5 ∗/
6 #inc lude <Wire . h>
7 #inc lude ”ActParams . h”
8 #de f i n e ACT ADDRESS 8 // Address at which ACT Arduino i s expect ing S e r i a l communication
9

10 void setupI2C () {
11 Wire . begin () ; // The address i s op t i ona l f o r the master
12 }
13

14 // Transmits STATE, YAW POSITION, TAIL POSITION
15 void sendActParams () {
16 i f (getActParams ()) {
17 Wire . beg inTransmiss ion (ACT ADDRESS) ;
18 // Transmit s t a t e
19 Wire . wr i t e (do lph inState) ;
20 Wire . wr i t e (” , ”) ;
21 // Transmit yaw po s i t i o n
22 Wire . wr i t e (yawServoPos) ;
23 Wire . wr i t e (” , ”) ;
24 Wire . wr i t e (t a i l S e rvoPos) ;
25 Wire . wr i t e (” ; ”) ;
26 Wire . endTransmission () ;
27 }
28 }

Sensor Checks

For this iteration of the robot, only the programmatic emergency stop has been implemented. If the
Arduino writes a high signal to the relay pin, the relay will close, allowing current to pass through. This
connection is furthermore regulated by the magnetic reed switch which must also be closed for servo operation.
A low signal will open the relay and no current will pass through.

1 /∗∗
2 ∗ SensorLogic . h
3 ∗ Purpose : De f ines a l l system sen so r s and func t i on s to check f o r normal performance .
4 ∗ Notes : Al l s en s o r s (water , temperature , bat te ry) were d i s ab l ed f o r demo .
5 ∗/
6 #de f i n e e s t op p in 8
7

8 void setupPins () {
9 pinMode (es top p in , OUTPUT) ;

10 }
11

12 // Writing 0 to the r e l ay w i l l open i t , t r i g g e r i n g the e−stop .
13 void f r e e z e moto r s () {
14 d i g i t a lWr i t e (e s top p in , LOW) ;
15 }
16

17 // Release the E−stop in code . Allow se rvo s to get power by c l o s i n g the r e l ay .
18 void r e l e a s e moto r s () {
19 d i g i t a lWr i t e (e s top p in , HIGH) ;
20 }
21

22 bool areSystemsOK () {
23 r e turn t rue ; // No s en so r s are read , system assumed to be OK.
24 }

19

Act

The Act Arduino receives the dolphin state, yaw servo position, and the tail position from the sense/think
Arduino using the Wire library again.

1 /∗∗
2 ∗ ActDolphin . ino
3 ∗ Purpose : Code f o r act Arduino o f team Cl i ck s and Whist les r obo t i c do lphin . Rece ives

robot s t a t e and servo p o s i t i o n s from sense / th ink Arduino over I2C . Writes p o s i t i o n s to
s e rvo s and b l i nk s l i g h t s .

4 ∗ Warnings : Make sure bat te ry powering the s e rvo s i s FULLY charged ; otherwise , the code
may be running and r e c e i v i n g c o r r e c t l y , but the re w i l l be no movement from the s e rvo s .

5 ∗ Author : Katya Soltan
6 ∗∗/
7

8 #inc lude <Wire . h>
9 #inc lude <Servo . h>

10 #de f i n e ACT ADDRESS 8
11 #de f i n e yel lowLedPin 8
12 #de f i n e blueLedPin 9
13

14 i n t t a i l S e rvoPos = 0 ;
15 i n t yawServoPos = 0 ;
16

17 #de f i n e yawServoPin 5
18 #de f i n e t a i l S e rvoP in 6
19 Servo yawServo ;
20 Servo t a i l S e r v o ;
21

22 enum robotState {
23 STANDBY, // No movement
24 SEARCH, // Search ing movement , r o t a t i n g about i t s e l f
25 APPROACH, // Moving towards t a r g e t
26 VICTORY, // Victory dance on f i nd i ng t a r g e t (could a l s o use to
27 // go in to cent e r o f pool to search f o r next t a r g e t)
28 HELPME // E−Stop
29 } ;
30

31 enum robotState do lph inState ;
32

33 void setup () {
34 se tupServos () ;
35 S e r i a l . begin (115200) ;
36 Wire . begin (ACT ADDRESS) ;
37 Wire . onReceive (rece iveEvent) ; // Receive s tate , yaw pos i t i on , and t a i l p o s i t i o n
38 // po s i t i o n from Sense /Think Arduino
39 }
40

41 void setupServos () {
42 yawServo . attach (yawServoPin) ;
43 t a i l S e r v o . attach (t a i l S e rvoP in) ;
44 }
45

46 void rece iveEvent (i n t bytes) { // Receive s tate , yaw , p i t ch from SENSE/THINK Arduino
47 i f (Wire . a v a i l a b l e () == 6) { // Comma−separated s tate , yaw pos i t i on , t a i l po s i t i on ,
48 // Total o f 6 bytes (the re ’ s a t r a i l i n g comma)
49 do lph inState = Wire . read () ; // Read the s t a t e
50 Wire . read () ; //Drop a comma
51 yawServoPos = Wire . read () ;
52 Wire . read () ;
53 t a i l S e rvoPos = Wire . read () ; // Read the t a i l p o s i t i o n as a byte
54

55 // Check that the l a s t cha rac t e r i s semico lon
56 i f (Wire . read () != ’ ; ’) {
57 S e r i a l . p r i n t l n (”INCORRECTLY RECEIVED”) ;
58 }
59 }
60 }

20

The yaw and tail servo positions are constantly being written to the servos. Because they should be updated
when they change, this approach can be improved upon by writing to the servos only when the onReceive()
function is called. To reflect the state of the robot, the LEDs need to be updated to either ON or OFF
depending on the state.

1 void loop () {
2 yawServo . wr i t e (yawServoPos) ;
3 t a i l S e r v o . wr i t e (t a i l S e rvoPos) ;
4 switch (do lph inState) {
5 case STANDBY:
6 bl inkStandbySigna l () ;
7 break ;
8

9 case SEARCH:
10 b l i nkSea r chS i gna l () ;
11 break ;
12

13 case APPROACH:
14 bl inkApproachSignal () ;
15 break ;
16

17 case VICTORY:
18 b l i nkV i c t o ryS i gna l () ;
19 break ;
20

21 case HELPME:
22 de f au l t :
23 bl inkHelpmeSignal () ;
24 break ;
25 }
26 }

The LEDs show the state of the robot. When both the yellow and blue lights are steadily on, Flipper is in
Standby mode. When only the yellow light is flashing, the robot is searching for the buoy. Once it finds the
target, the yellow becomes steady and the blue light begins to flash. Once it finds the target, both LEDs
start to blink slowly. If the robot goes into Helpme mode, both LEDs flash very quickly.

1 // Standby mode : Yellow and Blue LEDs are ON.
2 void b l inkStandbySigna l () {
3 d i g i t a lWr i t e (yellowLedPin , HIGH) ;
4 d i g i t a lWr i t e (blueLedPin , HIGH) ;
5 }
6

7 // Search mode : Yellow LED b l i nk s every 500 ms . Blue LED i s OFF.
8 void b l i nkSea r chS i gna l () {
9 d i g i t a lWr i t e (yellowLedPin , m i l l i s () % 500 > 250 ? HIGH : LOW) ; //Bl ink every 500ms

10 d i g i t a lWr i t e (blueLedPin , LOW) ;
11 }
12

13 // Approach mode : Blue LEDs b l ink every 500ms . Yellow LED i s ON.
14 void bl inkApproachSignal () {
15 d i g i t a lWr i t e (yellowLedPin , HIGH) ;
16 d i g i t a lWr i t e (blueLedPin , m i l l i s () % 500 < 250 ? HIGH : LOW) ; //Bl ink every 500ms
17 }
18

19 // Victory mode : Yellow and Blue LEDs b l ink a s s yme t r i c a l l y every 650ms (slow)
20 void b l i nkV i c t o ryS i gna l () {
21 d i g i t a lWr i t e (yellowLedPin , m i l l i s () % 650 > 500 ? HIGH : LOW) ; //Bl ink 650ms

asymmetr ica l ly
22 d i g i t a lWr i t e (blueLedPin , m i l l i s () % 650 > 500 ? HIGH : LOW) ; //Bl ink 650ms asymmetr ica l ly
23 }
24

25 // Helpme mode : Yellow and Blue LEDs b l ink every 150ms (f a s t) .
26 void bl inkHelpmeSignal () {
27 d i g i t a lWr i t e (yellowLedPin , m i l l i s () % 150 > 75 ? HIGH : LOW) ; //Bl ink every 150ms
28 d i g i t a lWr i t e (blueLedPin , m i l l i s () % 150 > 75 ? HIGH : LOW) ; //Bl ink every 150ms
29 }

21

Performance

The integration of all systems was not entirely successful. The pressure hull with electronics fit and
connected to the batteries and servos inside of the front hull. The emergency stop worked flawlessly, with
the magnet held by the dorsal fin exerting a strong enough magnetic field that, when the magnet was lowered,
interacted with the reed switch and activated it. Separately, software subsystems performed well with the
electronics, but when put together onto the robot, failed to move the yaw servo. For demo, Flipper only
exhibited a straight swimming motion propelled by the undulating action of the tail.

Mechanical

A few flaws in the initial CAD design of the robot lead to some post-fabrication fixes. The most significant
oversight was including places for wires. The battery holders did not account for the thick leads as well as
the thick casing from their waterproofing; instead of facing the tail and having short leads connecting to the
pressure hull screws, the batteries were rotated towards the front of the robot and required very long battery
wires. The servo holders were not only too small, but also did not have a way to route the wires out and
needed to be dremeled out. Additionally, the servos were not perfectly aligned with the gears and needed to
be ziptied into place to prevent the slipping of the gears.

The servos were not aligned due to sizing issues and required zipties to be held in place.

The design of the tail gear train, while elegant, is very hard to tune; the gears clicked and were not fixed
well to the links and required tightening, which in the space that was available was hard to impossible.

In the design of the front hull, the dolphin has a nose cone that completes its aesthetic. The cone was
not sized properly and in the end needed to be discarded; however, without it, it was significantly easier to
take out the pressure hull, which is already a lengthy process.

While the straps and velcro method of securing the pressure hull seems like it would give the most
flexibility in debugging and replacing parts, the straps were hard to tighten and needed to be undone every
single time the tube required opening. The velcro was very tightly routed through the retaining board,
making the tightening process delicate, so as not to crack the board.

22

Fliipper did not float parallel to the surface of the water and instead has the nose pointed up to the
ceiling. Tare rods for extra weight were available for tuning the nose of the robot to counteract the buoyancy
of the pressure hull. In the next iteration of the robot, this must be fixed to allow the PixyCam to have a
level, underwater image.

The nose of the dolphin points upward, which is not a useful position for the PixyCam.

Electrical

The electrical system, while functional, was very messy, with no good way to organize the wires. One
reason for this was the very small size of the pressure hull. In order to create a robot as close to two feet
long as possible, we needed to cut the tube very short to account for the length of Flipper ’s tail.

The greatest setback for the electrical and software systems was the waterproofing of the tube. While
the brass screws and Schrader valve were decently water resistant, the plastic valves sheered off, leaving
the threaded sections inside of the end cap, and tearing off the silicone glue. It took three more glueing
sessions, using both aquarium and gasket sealant to achieve a good seal. O-ring grease also improved the
performance of the end cap. A paper towel was put into the tube to soak up any moisture that did end up
getting through.

Waterproofing the pressure hull was the biggest setback for testing electronics and software integration.

23

Software

The XBee communication with the computer worked perfectly with the Sparkfun XBee shield. In the
beginning, we had problems connecting to the XBee via the I/O shield, but this problem was corrected.

All sensors in the pressure hull were stripped for demo, including the temperature and water level sensors.
Technically, Flipper cannot go into Helpme mode with the current code. This decision was made due to time
constraints and the inability to calibrate the sensors well enough to distinguish between when the dolphin
was actually in an emergency state and when the sensors gave false readings.

We were only able to test forward motion with Flipper.

The most obvious improvement in the code is to transfer the act parameter definitions to the act Arduino
itself. We suspect that the reason the yaw servo was not getting signals, even though I2C was transmitting
and receiving the correct values, is because the double timing loops were skipping update steps while the
“updated” values were coming in too fast for the servo to respond.

Another obstacle in testing the code was the PixyCam, which sometimes recalibrated itself and forgot all
the colors that it had been trained on. Additionally, the sizes of the blocks of color that it detected varied
drastically with the angle at which it was pointed towards the same buoy (at the same distance) and where
in the pool it was located. Due to the LEDs’ light being dispersed in the water, when Flipper was extremely
far away from the LED, the area of the buoy was three times that of when it was very close to it on the
approach. We tried to implement a time delay between when the Arduino should consider if the buoy is
close and the time at which the robot began to approach the target, but were not able to test this due to
the fact that only forward propulsion was working.

24

